

Django Duke client documentation

Contents:

Django duke client aims provide a turnkey development environment for django and make django development easier and faster.

	Overview
	What is Django Duke client ?

	Screenshots
	duke commands

	Dev. environment commands

	Dev. environment shortcuts

	Installation
	Official releases

	Development version

	Getting started tutorial
	Project layout

	Starting a project from scratch

	Initializing your project

	Building your project

	Start working !

	Customization

	References

	Development mode
	Introduction

	Commands & shortcuts

	Project configuration
	Introduction

	Configurations

	Working with sources

	Deploying
	With fabric

	Development roadmap

	Cheatsheet
	Duke commands

	Dev commands

	Customization
	Intitialisation

	Files

	Customize prompt

Overview

Contents

	Overview
	What is Django Duke client ?
	Feature overview

What is Django Duke client ?

Django duke client aims provide a turnkey development environment for django and make django development easier and faster.
He set up a number of strategies to reduce setup time. It can also install, delete, or edit external sources easy, and quickly through a single file.

TODO..

Feature overview

	Uses and installs its own modules (for example, python, django), and thus avoids the potential for conflict.

	shortcuts

	deployment simple, configurable, and fast

	custom possible by overwriting files, functions moduls ...

Screenshots

Contents

	Screenshots
	duke commands
	duke tartproject

	duke init

	Dev. environment commands
	buildout

	dev or develop

	django

	Dev. environment shortcuts
	runserver

	syncdb

duke commands

duke tartproject

[image: http://i.imgur.com/AUsalh.jpg]

duke init

[image: http://i.imgur.com/Zmbv2h.jpg]

Dev. environment commands

buildout

[image: http://i.imgur.com/7TzcOh.jpg]

dev or develop

[image: http://i.imgur.com/1xStDh.jpg]

django

[image: http://i.imgur.com/WN6Keh.jpg]

Dev. environment shortcuts

runserver

[image: http://i.imgur.com/Y0MdLh.jpg]

syncdb

[image: http://i.imgur.com/CmCFTh.jpg]

Installation

Contents

	Installation
	Official releases

	Development version

Official releases

Official releases will eventually be available from PyPI [http://pypi.python.org/pypi/django-duke-client/].

Download the .zip distribution file and unpack it. Inside is a script
named setup.py. Enter this command:

python setup.py install

...and the package will install automatically.

Development version

Alternatively, you can get the latest source from our git [http://git-scm.com/] repository:

git clone git://github.com/h3/django-duke-client.git

Add the resulting folder to your PYTHONPATH [http://docs.python.org/tut/node8.html#SECTION008110000000000000000] or symlink the dukeclient
directory inside it into a directory which is on your PYTHONPATH, such as
your Python installation’s site-packages directory.

You can verify that the application is installed by typing the following
command in a terminal:

$: duke help

When you want to update your copy of the source code, run git pull
from within the django-duke-client directory.

Caution

The development version may contain bugs which are not present in the
release version and introduce backwards-incompatible changes.

If you’re tracking master, keep an eye on the recent Commit History [https://github.com/h3/django-duke-client/commits/master]
before you update your copy of the source code.

Getting started tutorial

Contents

	Getting started tutorial
	Project layout

	Starting a project from scratch

	Initializing your project

	Building your project

	Start working !

	Customization

	References

Project layout

The django duke client tries to be independent as possible in term of project layout. However a minimal structure is
required for it to work properly.

This is the absolute minimal project layout to initialize duke:

project-root-folder/
 - setup.py

When the project is built, it looks like this:

project-root-folder/
 - bootstrap.py
 - buildout.cfg
 - dev.cfg
 - setup.py
 + .duke/
 + bin/
 + develop-eggs/
 + eggs/
 + parts/
 + projectname.egg-info
 + src/
 + projectname/
 - settings.py
 - local_settings.py
 + conf/
 + settings/
 - default.py
 - dev.py

Starting a project from scratch

Creating a new project from scratch is easy as:

user@host$ duke startproject my-project-name
user@host$ cd my-project-name/
user@host$ ls
README.rst setup.py

The setup.py file is the only required file for a new project. The
README.rst is created only for convenience. The next step is to edit
the setup file according to your needs.

Initializing your project

Next we need to initialize duke on this project. Which can be done
like so:

user@host$ duke init myprojectname
Installing bootstrap.py..
Installing default buildout.cfg
Installing default base.cfg
Installing default dev.cfg
Installing default prod.cfg
Initializing zc.buildout
Creating directory '/tmp/my-project-name/.duke/bin/'.
Creating directory '/tmp/my-project-name/.duke/parts/'.
Creating directory '/tmp/my-project-name/.duke/eggs/'.
Creating directory '/tmp/my-project-name/.duke/develop-eggs/'.
Generated script '/tmp/my-project-name/.duke/bin/buildout'.
Installing dev hooks
Done!

As you can see, the init command setup and configure buildout for the
project and put most of the stuff in a folder name .duke/. This folder
should not be added to your VCS. It is meant to be recreated easily.

Caution

It’s important to understand the difference between my-project-name
and myprojectname. The first is only the folder containing your project.
Its name doesn’t really matters. If you are using SVN you should probably
use trunk as folder name to match SVN folder naming conventions.

On the other side, myprojectname is your real django project name. Duke
will create it automatically only if there isn’t already a project of that
name in the folder.

Once the initialization done, django duke automatically enters development
mode (which can be done by typing duke dev in your project folder).

You know when you are in development mode when your shell prompt is prefixed
with a project name like this:

user@host|myprojectname:~/.../trunk/my-project-name$ ls
bootstrap.py buildout.cfg dev.cfg prod.cfg README.rst setup.py

You can see django duke created different configuration files which will be covered
later in the documentation.

Your command line prompt also has been changed. It now includes your project name so
you always know in which sandbox you are working on. It also indicate if you are in a
Subversion or Git repository. This is all customizable.

Building your project

At this point you need to edit buildout.cfg to add the requirements you need
and buildout your project:

user@host|myprojectname:~/.../trunk/my-project-name$ buildout
Getting distribution for 'mr.developer'.
warning: no files found matching 'README.txt'
Got mr.developer 1.19.
Getting distribution for 'buildout.dumppickedversions'.
Got buildout.dumppickedversions 0.5.
Getting distribution for 'elementtree'.
zip_safe flag not set; analyzing archive contents...
Got elementtree 1.2.6-20050316.
mr.developer: Creating missing sources dir /tmp/my-project-name/src.
mr.developer: Queued 'djangodukerecipe' for checkout.
mr.developer: Cloned 'djangodukerecipe' with git.
Develop: '/tmp/my-project-name/src/djangodukerecipe'
Develop: '/tmp/my-project-name/.'
Getting distribution for 'zc.recipe.egg'.
Got zc.recipe.egg 1.3.2.
Getting distribution for 'z3c.recipe.scripts'.
Got z3c.recipe.scripts 1.0.1.
Unused options for buildout: 'downloads-directory'.
Installing _mr.developer.
Generated script '/tmp/my-project-name/.duke/bin/develop'.
Installing python.
Getting distribution for 'simplejson'.
zip_safe flag not set; analyzing archive contents...
simplejson.tests.__init__: module references __file__
Got simplejson 2.3.2.
Generated interpreter '/tmp/my-project-name/.duke/bin/python'.
Installing djangodev.
Generated script '/tmp/my-project-name/.duke/bin/djangodev'.
Generated script '/tmp/my-project-name/.duke/bin/djangodev.wsgi'.

Once buildout has been run for the first time, you’ll see new files in your project
folder:

user@host|myprojectname|svn:~/.../trunk/my-project-name$ ls -a
bootstrap.py buildout.cfg dev.cfg .duke myprojectname/
my_project_name.egg-info/ prod.cfg README.rst setup.py src/

Start working !

At this point you can start working on your django project:

user@host|myprojectname|svn:~/.../trunk/my-project-name$ cd projectname/
user@host|myprojectname|svn:~/.../trunk/my-project-name$ django syncdb
user@host|myprojectname|svn:~/.../trunk/my-project-name$ django runserver

You don’t need to type python manage.py, there is a short cut named django.
In fact there is many useful shortcuts for django:

	dbshell

	dumpdata

	loaddata

	runserver

	shell

	syncdb

To see the full list of available commands type duke help.

Customization

You can tweak your development environment quite alot.

To do so, simply type this command:

user@host$ duke customize
Copying setup.py to ~/.duke/templates/
Copying profile to ~/.duke/templates/
Copying bootstrap.py to ~/.duke/templates/
Copying gitignore to ~/.duke/templates/
Copying buildout.cfg to ~/.duke/templates/
Copying project_conf.yml to ~/.duke/templates/
Copying dev to ~/.duke/templates/
Copying env to ~/.duke/templates/
Copying duke_conf.yml to ~/.duke/templates/
Copying base.cfg to ~/.duke/templates/
Copying svnignore to ~/.duke/templates/
Copying dev.cfg to ~/.duke/templates/

Now any modification made to files copied in ~/.duke/templates/ will take
precedence over those used normally by duke.

If you want to change the command prompt, you will need to modify ~/.duke/templates/profile.

If there is not enough options for your taste, you can tweak ~/.duke/templates/env. Be warned
that it might put your bashfu to test.

Note that you will need to restart your environment for the changes to take effect.

To do so, simply hit Ctrl+D (or exit) and retype duke dev.

Finally, resist the temptation of editing files in .duke/bin/ as they are recreated each
time you run the buildout command. Per project configuration is not supported as now, but it
should be sufficiently easy to implement to be supported sooner than later.

Don’t hesitate to share your improvements with me ! :)

References

	setup.py
	http://www.buildout.org/docs/tutorial.html

	Buildout
	http://www.buildout.org/docs/
http://pypi.python.org/pypi/zc.buildout/1.5.2

	djangorecipe
	http://pypi.python.org/pypi/djangorecipe/0.99

	z3c.recipe.scripts
	http://pypi.python.org/pypi/z3c.recipe.scripts

	mr.developer
	http://pypi.python.org/pypi/mr.developer

	Django
	https://docs.djangoproject.com/

	django/buildout
	http://jacobian.org/writing/django-apps-with-buildout/

Development mode

Contents

	Development mode
	Introduction

	Commands & shortcuts

Introduction

One of the key feature of django duke is to provide a sandboxed development
environment which provide some shortcuts and utilities to make it easier to
work with django.

To activate the development environment on a project managed by duke, simply
go in the project folder and type duke dev:

user@host$: cd my-project-name/
user@host$: duke dev
user@host|myprojectname:~/.../trunk/my-project-name$:

Once the development environment is activated, the shell prompt should be
prefixed with the project’s name to indicate that you are working within
a sandboxed environment.

The distinction is important because the development environment extends
your shell with new commands and does some magic to make sure you are
working within the sandbox.

For example, if you type the command python in dev mode, the Python
interpreter executed isn’t the system wide python interpreter (usually
/usr/bin/python). Instead it will call the python interpreter sandboxed
in my-project-name/.duke/bin/python.

The environment also provide shortcuts and commands to ease the development
process.

Commands & shortcuts

	Command
	Description

	buildout
	Run buildout to build or rebuild your environment

	dbshell
	Run the database shell (alias for django runserver)

	dev
	Run the duke development environement

	python
	Run the python environement

	runserver
	Run the dev server (alias for django runserver)

	shell
	Run a python shell* (alias for django shell)

	syncdb
	Synchronize database (alias for django syncdb)

	init
	Create the duke environement (run buildout after using init)

	startproject
	Create a new django project

	customize
	Copy the config of duke to ~/.duke (see Customisation)

	help
	Print all the commandes

* if ipython is install, ipython will be ruen instead of python

Project configuration

Contents

	Project configuration
	Introduction
	buildout.cfg

	dev.cfg

	Configurations
	[duke]

	[buildout]

	[python]

	[django]

	[sources]

	[versions]

	Working with sources

Introduction

Project configuration is made with the buildout configuration files. By default
there is only two cfg files; buildout.cfg and dev.cfg.

It is possible to create stage specific configuration by adding cfg files named
after the stage name which extends buildout.cfg.

For example, if I have a stage named prod on which I want to configure cron jobs,
I simply have to create a prod.cfg file in which I put the required configuration.

At deploy time, duke will use prod.cfg instead of buildout.cfg.

buildout.cfg

The main configuration is buildout.cfg, it should be complete and functional
stand alone as this is the configuration used in production.

dev.cfg

This configuration file is used only for development, it extends buildout.cfg.

You can extend individual configurations keys like so:

[buildout]
extends = buildout.cfg

extend
eggs +=
 ipython

If you wish to overwrite it instead, simply remove the + sign.

Configurations

[duke]

	Directive
	Default
	Description

	django
	${buildout:directory}/.duke/bin/django
	Shortcut to django executable

	cron
	${buildout:directory}/cron/
	Path where cron jobs script are stored

[buildout]

	Directive
	Default
	Description

	allowed-eggs-from-site-packages
	PIL, MySQL-python, ...
	Use this directive to tell buildout which system wide package it can use*

	auto-checkout
	djangodukerecipe
	List of modules sources to auto checkout

	develop
	.
	List of editable modules to install with develop

	eggs
	none
	List of eggs to install (project requirements)

	exec-sitecustomize
	false
	Normally the Python’s real sitecustomize module is not processed

	extensions
	mr.developer
	Buildout extensions to load

	include-site-packages
	true
	We allow site packages unless allowed-eggs-from-site-packages is specified

	index
	http://pypi.python.org
	HTTP URL of pypi (default) or a pypi mirror

	newest
	false
	Check for new packages versions

	parts
	python, django, scripts
	Buildout parts to run (ex: python, djangodev)

	unzip
	true
	Zipped eggs make debugging more difficult and often import more slowly

	versions
	versions
	Freeze eggs or sources to specific versions

	sources
	sources
	This specifies the name of a section which lists the repositories

	sources-dir
	src
	This specifies the directory where your package sources will be placed

	auto-checkout
	src
	This specifies the names of packages which should be checked out during
buildout. Packages already checked out are skipped. You can use * as a
wildcard for all packages in sources

	always-checkout
	false
	This defaults to false. If it’s true, then all packages specified by
auto-checkout and currently in develop mode are updated during each
buildout run. If set to force, then packages are updated even when they
are dirty instead of asking interactively.

	always-accept-server-certificate
	false
	If it’s true, invalid server certificates are accepted without asking
(for subversion repositories)

	If allowed-eggs-from-site-packages is an empty list, then no eggs from site-packages are chosen, but site-packages will still be included at the end of path lists.

[python]

	interpreter
	Name of the Python interpreter (default python)

	extra-paths
	List of paths to add to the PYTHONPATH. Note that you must
add paths of modules installed from sources here. The path
should look like this: ${buildout:directory}/src/mptt

[django]

	Directive
	Default
	Description

	extra-paths
	${python:extra-paths}
	

	settings
	settings
	Name of the django settings module

	wsgi
	false
	

	project
	false
	The project name

[sources]

Example:

[sources]
django = git git://github.com/django/django.git
django-mptt = git git://github.com/django-mptt/django-mptt.git branch=reodering_test
django-fiber = git://github.com/ridethepony/django-fiber.git update=true

Supported source kinds: svn, hg, git, bzr, darcs, cvs, and fs.

When adding new sources, don’t forget to also add them in to the extra-paths of the
[python] section and the auto-checkout in the [buildout] section.

[versions]

Example:

[versions]
django=1.4
PIL=1.7.1

Working with sources

If you work with source packages You need to edit tree configs.

Tell buildout to checkout the package every time:

[buildout]
auto-checkout +=
 django

Then specify the source URL:

[sources] # svn, hg or git
django = git git://github.com/django/django.git

Finally, add it to the environment’s PYTHONPATH like this:

[python]
extra-paths +=
 ${buildout:directory}/src/django

Deploying

Contents

	Deploying
	With fabric
	Project Configurations

	Deployment configurations

	Usage

	Per role configurations

	Development roadmap

With fabric

Caution

This is pretty much alpha stuff, it might change a lot in the future.

Currently the duke client only offer some useful fabric [http://fabfile.org/] tasks for
standard django deployment.

Project Configurations

To use it, simply create a file named fabfile.py in the root directory of
your project (where your setup.py file is).

The file content should look like this:

import os

from dukeclient.fabric.utils import get_role, get_conf, get_project_path
from dukeclient.fabric.tasks import *

LOCAL_PATH = os.path.dirname(os.path.abspath(__file__))

env.roledefs.update({
 'demo': ['user@demo.host.com'],
 'prod': ['user@production.host.com:5555'],

 # Not required, but can be useful if you want to invoke commands
 # on multiple servers at once.
 'http_servers': ['user@production.host.com:5555', 'user@demo.host.com'],
})

env.site = {
 'domain': 'mysite.com',
 'package': 'mysite.com',
 'project': 'mysite',
 'repos': 'svn://svn.myserver.com/mysite.com/trunk/mysite.com/',
}

env.roleconfs = {

 # This is an example of how you can deploy on Plesk
 'prod': {
 'hosts': env.roledefs['prod'],
 'user': 'username',
 'group': 'usergroup',
 'document-root': '/var/www/vhosts/%(domain)s/httpdocs/',
 'vhost-conf': '/var/www/vhosts/%(domain)s/conf/vhost.conf',

 # Most commands uses an event system which will run scripts
 # at specific times.
 'on-code-sync': [],
 'on-code-sync-done': [],
 'on-apache-reload': [
 # You can run scripts before and after most of the available
 # commands. In this case we tell Plesk to reload its vhost
 # configuration for mysite.com
 '/usr/local/psa/admin/sbin/websrvmng --reconfigure-vhost --vhost-name=%(domain)s',
],
 'on-apache-reload-done': [],

 # If mod_python is installed on your Apache server, you'll need
 # virtualenv or you will go insane. Really.
 'virtualenv': True,
 },

 # This example show a more basic Apache deployment
 'demo': {
 'hosts': env.roledefs['demo'],
 'document-root': '/var/www/vhosts/demo.%(domain)s/',
 'media-root': '/var/www/vhosts/demo.%(domain)s/%(domain)s/%(project)s/media/',
 'static-root': '/var/www/vhosts/demo.%(domain)s/%(domain)s/static/',
 'vhost-conf': '/etc/apache2/sites-enabled/demo.%(domain)s',
 'virtualenv': True,
 'user': 'www-data',
 'group': 'www-data',
 'on-deploy-done': [
 'ln -sf /var/www/vhosts/demo.%(domain)s/%(domain)s/%(project)s/media/ /var/www/vhosts/demo.%(domain)s/media',
],
 },

}

Deployment configurations

Deployment configurations must be stored in a directory named deploy/ in
the root directory of your project.

Virtualhost

Virtual host files a threated as template, so you don’t have to adjust them
every time you change a configuration.

The naming convention is <role>.vhost. So if you have a demo and a prod
role, your vhost files should be name demo.vhost and prod.vhost.

Here’s an example of a standard Apache/WSGI vhost configuration file:

<VirtualHost *:80>
 ServerAdmin max@motion-m.ca
 DocumentRoot %(document-root)s
 ServerName %(project)s.d.motion-m.ca
 ErrorLog /var/log/apache2/%(package)s.d.motion-m.ca-error_log
 CustomLog %(project)s.d.motion-m.ca common
 Options FollowSymLinks
 WSGIPassAuthorization On
 WSGIScriptAlias / %(document-root)s%(package)s/%(project)s/wsgi.py
 WSGIDaemonProcess %(project)s user=www-data group=www-data processes=5 threads=1
 WSGIProcessGroup %(project)s
 Alias /static/ %(document-root)sstatic/
 Alias /media/ %(document-root)smedia/
 <Directory %(document-root)smedia/>
 Order deny,allow
 Allow from all
 AllowOverride None
 </Directory>
 <Directory %(document-root)sstatic/>
 Order deny,allow
 Allow from all
 AllowOverride None
 </Directory>
</VirtualHost>

Settings.py

The settings.py files can be automatically overwritten with a settings.py template.

For example, to set your project’s settings on a role named demo you would start
by creating a file named deploy/demo_settings.py.

Now every time you deploy your code, the file deploy/demo_settings.py gets copied
over myproject/local_settings.py, overriding any other settings set elsewhere.

Here’s an example which defines the default database backend:

from %(project)s.conf.settings.default import *

DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.%%s' %% "mysql", # Read the caution below !
 'NAME': '%(project)s_demo',
 'USER': '%(project)s',
 'PASSWORD': '*********',
 }
}

Caution

Make sure to scape all the modulos by duplicating them like this: %%.

Since I use Advanced String Formating to replace the template variables you have to
be careful when using a modulo (%). If you don’t escape it Python will think it has
to insert a token there and will most likely throw an exception at your next buildout.

Usage

Deploying

On demo:

fab -R demo full_deploy

On prod:

fab -R prod full_deploy

On both:

fab -R http_servers full_deploy

Updating

fab -R prod deploy

Caution

The deploy command will not update externals

Other commands

Other commands will eventually be documented properly .. meanwhile you can
list them all using the fab -l command.

Per role configurations

Sometimes you want to tweak configurations depending on which role the project
is running on.

To accomplish this, simply create a cfg file named after the role and make it
extend the buildout.cfg file.

The next time buildout will be run on this role, it will find the file and use it
instead of buildout.cfg.

Here’s an example of how one could set a cron job on the production server:

prod.cfg:

[buildout]
extends = buildout.cfg
parts += django-cleanup

[django-cleanup]
recipe = z3c.recipe.usercrontab
times = @monthly
command = ${buildout:directory}/.duke/bin/django cleanup

Development roadmap

In the long term a django duke master will be created. The scope of the
functionalities isn’t yet fixed, but it’s main purpose will be to act as a
deployment server. It will hold servers and projects configurations and allow
easy deployment using the duke command.

There is several advantages of using centralized deployment instead
of a distributed deployment strategy (with fabric). But the most important
advantage for us is to be able to assign deployment rights to developers without
giving them actual access to the production servers.

When centralized deployment will be implemented, we will probably move to other
nice to have features like scheduled deployment and continous integration and maybe even a plugin
architecture for things like website monitoring, project management and such.

Cheatsheet

Contents

	Cheatsheet
	Duke commands

	Dev commands

Duke commands

	Note: An <argument> ending with -r means the command accepts Regular

	Expressions

	duke startproject <project-name> | Create a new project from scratch

	duke init <project_name>
	Initialize a django project*

	duke dev
	Start development environment

	* Duke will create the project if it doesn’t exists. It will also start the

	developent environment when done.

Dev commands

	buildout
	Build or rebuild development env.

buildout | Build or rebuild development env. |

Customization

Intitialisation

You can tweak your development environment quite alot.

To do so, simply type this command:

user@host$ duke customize
Copying setup.py to ~/.duke/templates/
Copying profile to ~/.duke/templates/
Copying bootstrap.py to ~/.duke/templates/
Copying gitignore to ~/.duke/templates/
Copying buildout.cfg to ~/.duke/templates/
Copying project_conf.yml to ~/.duke/templates/
Copying dev to ~/.duke/templates/
Copying env to ~/.duke/templates/
Copying duke_conf.yml to ~/.duke/templates/
Copying base.cfg to ~/.duke/templates/
Copying svnignore to ~/.duke/templates/
Copying dev.cfg to ~/.duke/templates/

Files

In the same shell:

user@host$ cd ~/.duke/templates
user@host$ ls
base.cfg bootstrap.py buildout.cfg dev dev.cfg duke_conf.yml env gitignore profile project_conf.yml setup.py svnignore

The files profile and env are used to personalize your prompt, or to add commands (alias) .

Customize prompt

If you want to modify your duke prompt, (simply) you have to edit profile.

Here the default profile file:

Typing "--settings=projectname.settingsfile" is annoying.
DJANGO_SETTINGS_MODULE=settings
SEP="|"
ENDCHAR="$ "
DUKE_DIRTRIM=2
DUKE_DJANGO_STR="django:"
DUKE_SVN_STR="svn:"
DUKE_GIT_STR="git:"
DUKE_PS1="${NO_COLOR}\u@\h${SEP}${BOLD_CYAN}\$(__in_project)${CYAN}%(project_name)s${NO_COLOR}${SEP}${BOLD_YELLOW}\$(__vcs_status)${YELLOW}\w${NO_COLOR}${ENDCHAR}"

will produce the following prompt:

user@host|projectname|svn:~/.../path/in/project$

You can change de value of the variable to personalize your prompt.

If it’s not enough, you can edit the env file.

Caution

all that you make in profile overwrite env

Here the default env file:

. ~/.bashrc
based on virtualenv's activate
This file must be used with "source bin/activate" *from bash*
you cannot run it directly

Shell colors
BLACK="\[\e[0;30m\]" BOLD_BLACK="\[\e[1;30m\]" UNDER_BLACK="\[\e[4;30m\]"
RED="\[\e[0;31m\]" BOLD_RED="\[\e[1;31m\]" UNDER_RED="\[\e[4;31m\]"
GREEN="\[\e[0;32m\]" BOLD_GREEN="\[\e[1;32m\]" UNDER_GREEN="\[\e[4;32m\]"
YELLOW="\[\e[0;33m\]" BOLD_YELLOW="\[\e[1;33m\]" UNDER_YELLOW="\[\e[4;33m\]"
BLUE="\[\e[0;34m\]" BOLD_BLUE="\[\e[1;34m\]" UNDER_BLUE="\[\e[4;34m\]"
PURPLE="\[\e[0;35m\]" BOLD_PURPLE="\[\e[1;35m\]" UNDER_PURPLE="\[\e[4;35m\]"
CYAN="\[\e[0;36m\]" BOLD_CYAN="\[\e[1;36m\]" UNDER_CYAN="\[\e[4;36m\]"
WHITE="\[\e[0;37m\]" BOLD_WHITE="\[\e[1;37m\]" UNDER_WHITE="\[\e[4;37m\]"
NO_COLOR="\[\e[0m\]"

parse_git_branch () {
 git branch --no-color 2> /dev/null | sed -e '/^[^*]/d' -e 's/* \(.*\)/\1/'
}

parse_git_dirty () {
 [[$(git status 2> /dev/null | tail -n1) != "nothing to commit (working directory clean)"]] && echo "*"
}

__vcs_status () {
 if [-d "$PWD/.svn"]; then
 echo "$DUKE_SVN_STR"
 elif [-n "$(parse_git_branch)"]; then
 echo "$DUKE_GIT_STR"
 fi
}

Prefix the command prompt with %(project_name)s
function __in_project {
 if ["`pwd | xargs basename`" = "%(project_name)s"] ; then
 echo "$DUKE_DJANGO_STR"
 else
 echo ""
 fi
}

Duke client default environment variables

DUKE_ENV="%(base_path)s"
DUKE_DIRTRIM=2
CUSTOM_TEMPLATES="~/.duke/templates"
_DUKE_OLD_PATH="$PATH"

Add bin/ to the executable path to make them available
without having to type their path and make all scripts
in it executables.
PATH="$DUKE_ENV/.duke/bin:$PATH"
export PATH
chmod a+x $DUKE_ENV/.duke/bin/*

unset PYTHONHOME if set
this will fail if PYTHONHOME is set to the empty string (which is bad anyway)
could use `if (set -u; : $PYTHONHOME) ;` in bash
if [-n "$PYTHONHOME"] ; then
 _DUKE_OLD_PYTHONHOME="$PYTHONHOME"
 unset PYTHONHOME
fi

This should detect bash and zsh, which have a hash command that must
be called to get it to forget past commands. Without forgetting
past commands the $PATH changes we made may not be respected
if [-n "$BASH" -o -n "$ZSH_VERSION"] ; then
 hash -r
fi

set a fancy prompt (non-color, unless we know we "want" color)
case "$TERM" in
 xterm-color) color_prompt=yes;;
esac

Django commands

function __django {
 if [-e "settings.py"] ; then
 django $@
 else
 echo "Error: You must be within a django project to use this command."
 fi
}

alias syncdb="__django syncdb"
alias runserver="__django runserver"
alias shell="__django shell"
alias dbshell="__django dbshell"
alias loaddata="__django loaddata"
alias dumpdata="__django dumpdata"

Duke commands

function __duke {
 if [-e "buildout.cfg"] ; then
 $@
 else
 echo "Error: You must be within a duke project to use this command."
 fi
}

FIXME: The -vv flag is only a dirty hack to workaround a suspected
threading issue with python. For some reason, on a fast machine with
multiple cores, buildout hangs randomly. Increasing buildout's output
solves this issue. If you are still experiencing this problem, consider
using -vvv for even more output.
https://github.com/fschulze/mr.developer/pull/76
alias buildout='__duke buildout -c dev.cfg -vv'
alias dev='__duke develop'

Python commands

Make sure that while within the dev environment we only
use the sandboxed python interpreter.
alias python="$DUKE_ENV/.duke/bin/python -S"
alias ipython="$DUKE_ENV/.duke/bin/ipython --autoindent --no-banner --deep-reload"

Prompt

function __duke_prompt {
 if [-z "$DUKE_ENV_DISABLE_PROMPT"] ; then
 _DUKE_OLD_PS1="$PS1"
 _DUKE_OLD_DIRTRIM="$PROMPT_DIRTRIM"
 . profile

 if ["x" != x] ; then
 PS1="$PS1"
 elif ["`basename \"$DUKE_ENV\"`" = "__"] ; then
 # special case for Aspen magic directories
 # see http://www.zetadev.com/software/aspen/
 PS1="(%(project_name)s$(in_project)) $PS1"
 PROMPT_DIRTRIM="$PROMPT_DIRTRIM"
 else
 PROMPT_DIRTRIM="$DUKE_DIRTRIM"
 PS1="$DUKE_PS1"
 fi
 export PS1
 export PROMPT_DIRTRIM
 fi
}
__duke_prompt

In this file you can creat / modify some variable.
For exemple if you want toi create a new alias for the django collectstatic commande, you juste have to add this line:

alias collectstatic="__django collectstatic"

Index

 _static/down.png

_static/down-pressed.png

_static/comment-bright.png

_static/up-pressed.png

_static/up.png

_static/file.png

_static/comment-close.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		Django Duke client documentation

 		Overview

 		What is Django Duke client ?

 		Feature overview

 		Screenshots

 		duke commands

 		duke tartproject

 		duke init

 		Dev. environment commands

 		buildout

 		dev or develop

 		django

 		Dev. environment shortcuts

 		runserver

 		syncdb

 		Installation

 		Official releases

 		Development version

 		Getting started tutorial

 		Project layout

 		Starting a project from scratch

 		Initializing your project

 		Building your project

 		Start working !

 		Customization

 		References

 		Development mode

 		Introduction

 		Commands & shortcuts

 		Project configuration

 		Introduction

 		buildout.cfg

 		dev.cfg

 		Configurations

 		[duke]

 		[buildout]

 		[python]

 		[django]

 		[sources]

 		[versions]

 		Working with sources

 		Deploying

 		With fabric

 		Project Configurations

 		Deployment configurations

 		Usage

 		Per role configurations

 		Development roadmap

 		Cheatsheet

 		Duke commands

 		Dev commands

 		Customization

 		Intitialisation

 		Files

 		Customize prompt

_static/plus.png

_static/minus.png

_static/comment.png

