
django-duke-client Documentation
Release dev

Maxime Haineault

Sep 27, 2017

Contents

1 Overview 3
1.1 What is Django Duke client ? . 3

2 Screenshots 5
2.1 duke commands . 6
2.2 Dev. environment commands . 6
2.3 Dev. environment shortcuts . 6

3 Installation 7
3.1 Official releases . 7
3.2 Development version . 7

4 Getting started tutorial 9
4.1 Project layout . 9
4.2 Starting a project from scratch . 10
4.3 Initializing your project . 10
4.4 Building your project . 11
4.5 Start working ! . 12
4.6 Customization . 12
4.7 References . 13

5 Development mode 15
5.1 Introduction . 15
5.2 Commands & shortcuts . 16

6 Project configuration 17
6.1 Introduction . 17
6.2 Configurations . 18
6.3 Working with sources . 20

7 Deploying 21
7.1 With fabric . 21
7.2 Development roadmap . 25

8 Cheatsheet 27
8.1 Duke commands . 27
8.2 Dev commands . 27

i

9 Customization 29
9.1 Intitialisation . 29
9.2 Files . 29
9.3 Customize prompt . 30

ii

django-duke-client Documentation, Release dev

Contents:

Django duke client aims provide a turnkey development environment for django and make django development easier
and faster.

Contents 1

django-duke-client Documentation, Release dev

2 Contents

CHAPTER 1

Overview

Contents

• Overview

– What is Django Duke client ?

* Feature overview

What is Django Duke client ?

Django duke client aims provide a turnkey development environment for django and make django development easier
and faster. He set up a number of strategies to reduce setup time. It can also install, delete, or edit external sources
easy, and quickly through a single file.

TODO..

Feature overview

• Uses and installs its own modules (for example, python, django), and thus avoids the potential for conflict.

• shortcuts

• deployment simple, configurable, and fast

• custom possible by overwriting files, functions moduls ...

3

django-duke-client Documentation, Release dev

4 Chapter 1. Overview

CHAPTER 2

Screenshots

Contents

• Screenshots

– duke commands

* duke tartproject

* duke init

– Dev. environment commands

* buildout

* dev or develop

* django

– Dev. environment shortcuts

* runserver

* syncdb

5

django-duke-client Documentation, Release dev

duke commands

duke tartproject

duke init

Dev. environment commands

buildout

dev or develop

django

Dev. environment shortcuts

runserver

syncdb

6 Chapter 2. Screenshots

CHAPTER 3

Installation

Contents

• Installation

– Official releases

– Development version

Official releases

Official releases will eventually be available from PyPI.

Download the .zip distribution file and unpack it. Inside is a script named setup.py. Enter this command:

python setup.py install

...and the package will install automatically.

Development version

Alternatively, you can get the latest source from our git repository:

git clone git://github.com/h3/django-duke-client.git

Add the resulting folder to your PYTHONPATH or symlink the dukeclient directory inside it into a directory
which is on your PYTHONPATH, such as your Python installation’s site-packages directory.

You can verify that the application is installed by typing the following command in a terminal:

7

http://pypi.python.org/pypi/django-duke-client/
http://git-scm.com/
http://docs.python.org/tut/node8.html#SECTION008110000000000000000

django-duke-client Documentation, Release dev

$: duke help

When you want to update your copy of the source code, run git pull from within the django-duke-client
directory.

Caution: The development version may contain bugs which are not present in the release version and introduce
backwards-incompatible changes.

If you’re tracking master, keep an eye on the recent Commit History before you update your copy of the source
code.

8 Chapter 3. Installation

https://github.com/h3/django-duke-client/commits/master

CHAPTER 4

Getting started tutorial

Contents

• Getting started tutorial

– Project layout

– Starting a project from scratch

– Initializing your project

– Building your project

– Start working !

– Customization

– References

Project layout

The django duke client tries to be independent as possible in term of project layout. However a minimal structure is
required for it to work properly.

This is the absolute minimal project layout to initialize duke:

project-root-folder/
- setup.py

When the project is built, it looks like this:

project-root-folder/
- bootstrap.py
- buildout.cfg

9

django-duke-client Documentation, Release dev

- dev.cfg
- setup.py
+ .duke/
+ bin/
+ develop-eggs/
+ eggs/
+ parts/
+ src/

+ projectname.egg-info
+ projectname/
- settings.py
- local_settings.py
+ conf/

+ settings/
- default.py
- dev.py

Starting a project from scratch

Creating a new project from scratch is easy as:

user@host$ duke startproject my-project-name
user@host$ cd my-project-name/
user@host$ ls
README.rst setup.py

The setup.py file is the only required file for a new project. The README.rst is created only for convenience. The
next step is to edit the setup file according to your needs.

Initializing your project

Next we need to initialize duke on this project. Which can be done like so:

user@host$ duke init myprojectname
Installing bootstrap.py..
Installing default buildout.cfg
Installing default base.cfg
Installing default dev.cfg
Installing default prod.cfg
Initializing zc.buildout
Creating directory '/tmp/my-project-name/.duke/bin/'.
Creating directory '/tmp/my-project-name/.duke/parts/'.
Creating directory '/tmp/my-project-name/.duke/eggs/'.
Creating directory '/tmp/my-project-name/.duke/develop-eggs/'.
Generated script '/tmp/my-project-name/.duke/bin/buildout'.
Installing dev hooks
Done!

As you can see, the init command setup and configure buildout for the project and put most of the stuff in a folder
name .duke/. This folder should not be added to your VCS. It is meant to be recreated easily.

10 Chapter 4. Getting started tutorial

django-duke-client Documentation, Release dev

Caution: It’s important to understand the difference between my-project-name and myprojectname. The first is
only the folder containing your project. Its name doesn’t really matters. If you are using SVN you should probably
use trunk as folder name to match SVN folder naming conventions.

On the other side, myprojectname is your real django project name. Duke will create it automatically only if there
isn’t already a project of that name in the folder.

Once the initialization done, django duke automatically enters development mode (which can be done by typing duke
dev in your project folder).

You know when you are in development mode when your shell prompt is prefixed with a project name like this:

user@host|myprojectname:~/.../trunk/my-project-name$ ls
bootstrap.py buildout.cfg dev.cfg prod.cfg README.rst setup.py

You can see django duke created different configuration files which will be covered later in the documentation.

Your command line prompt also has been changed. It now includes your project name so you always know in which
sandbox you are working on. It also indicate if you are in a Subversion or Git repository. This is all customizable.

Building your project

At this point you need to edit buildout.cfg to add the requirements you need and buildout your project:

user@host|myprojectname:~/.../trunk/my-project-name$ buildout
Getting distribution for 'mr.developer'.
warning: no files found matching 'README.txt'
Got mr.developer 1.19.
Getting distribution for 'buildout.dumppickedversions'.
Got buildout.dumppickedversions 0.5.
Getting distribution for 'elementtree'.
zip_safe flag not set; analyzing archive contents...
Got elementtree 1.2.6-20050316.
mr.developer: Creating missing sources dir /tmp/my-project-name/src.
mr.developer: Queued 'djangodukerecipe' for checkout.
mr.developer: Cloned 'djangodukerecipe' with git.
Develop: '/tmp/my-project-name/src/djangodukerecipe'
Develop: '/tmp/my-project-name/.'
Getting distribution for 'zc.recipe.egg'.
Got zc.recipe.egg 1.3.2.
Getting distribution for 'z3c.recipe.scripts'.
Got z3c.recipe.scripts 1.0.1.
Unused options for buildout: 'downloads-directory'.
Installing _mr.developer.
Generated script '/tmp/my-project-name/.duke/bin/develop'.
Installing python.
Getting distribution for 'simplejson'.
zip_safe flag not set; analyzing archive contents...
simplejson.tests.__init__: module references __file__
Got simplejson 2.3.2.
Generated interpreter '/tmp/my-project-name/.duke/bin/python'.
Installing djangodev.
Generated script '/tmp/my-project-name/.duke/bin/djangodev'.
Generated script '/tmp/my-project-name/.duke/bin/djangodev.wsgi'.

4.4. Building your project 11

django-duke-client Documentation, Release dev

Once buildout has been run for the first time, you’ll see new files in your project folder:

user@host|myprojectname|svn:~/.../trunk/my-project-name$ ls -a
bootstrap.py buildout.cfg dev.cfg .duke myprojectname/
my_project_name.egg-info/ prod.cfg README.rst setup.py src/

Start working !

At this point you can start working on your django project:

user@host|myprojectname|svn:~/.../trunk/my-project-name$ cd projectname/
user@host|myprojectname|svn:~/.../trunk/my-project-name$ django syncdb
user@host|myprojectname|svn:~/.../trunk/my-project-name$ django runserver

You don’t need to type python manage.py, there is a short cut named django. In fact there is many useful shortcuts for
django:

• dbshell

• dumpdata

• loaddata

• runserver

• shell

• syncdb

To see the full list of available commands type duke help.

Customization

You can tweak your development environment quite alot.

To do so, simply type this command:

user@host$ duke customize
Copying setup.py to ~/.duke/templates/
Copying profile to ~/.duke/templates/
Copying bootstrap.py to ~/.duke/templates/
Copying gitignore to ~/.duke/templates/
Copying buildout.cfg to ~/.duke/templates/
Copying project_conf.yml to ~/.duke/templates/
Copying dev to ~/.duke/templates/
Copying env to ~/.duke/templates/
Copying duke_conf.yml to ~/.duke/templates/
Copying base.cfg to ~/.duke/templates/
Copying svnignore to ~/.duke/templates/
Copying dev.cfg to ~/.duke/templates/

Now any modification made to files copied in ~/.duke/templates/ will take precedence over those used normally by
duke.

If you want to change the command prompt, you will need to modify ~/.duke/templates/profile.

12 Chapter 4. Getting started tutorial

django-duke-client Documentation, Release dev

If there is not enough options for your taste, you can tweak ~/.duke/templates/env. Be warned that it might put your
bashfu to test.

Note that you will need to restart your environment for the changes to take effect.

To do so, simply hit Ctrl+D (or exit) and retype duke dev.

Finally, resist the temptation of editing files in .duke/bin/ as they are recreated each time you run the buildout com-
mand. Per project configuration is not supported as now, but it should be sufficiently easy to implement to be supported
sooner than later.

Don’t hesitate to share your improvements with me ! :)

References

setup.py http://www.buildout.org/docs/tutorial.html
Buildout http://www.buildout.org/docs/ http://pypi.python.org/pypi/zc.buildout/1.5.2
djangorecipe http://pypi.python.org/pypi/djangorecipe/0.99
z3c.recipe.scripts http://pypi.python.org/pypi/z3c.recipe.scripts
mr.developer http://pypi.python.org/pypi/mr.developer
Django https://docs.djangoproject.com/
django/buildout http://jacobian.org/writing/django-apps-with-buildout/

4.7. References 13

http://www.buildout.org/docs/tutorial.html
http://www.buildout.org/docs/
http://pypi.python.org/pypi/zc.buildout/1.5.2
http://pypi.python.org/pypi/djangorecipe/0.99
http://pypi.python.org/pypi/z3c.recipe.scripts
http://pypi.python.org/pypi/mr.developer
https://docs.djangoproject.com/
http://jacobian.org/writing/django-apps-with-buildout/

django-duke-client Documentation, Release dev

14 Chapter 4. Getting started tutorial

CHAPTER 5

Development mode

Contents

• Development mode

– Introduction

– Commands & shortcuts

Introduction

One of the key feature of django duke is to provide a sandboxed development environment which provide some
shortcuts and utilities to make it easier to work with django.

To activate the development environment on a project managed by duke, simply go in the project folder and type duke
dev:

user@host$: cd my-project-name/
user@host$: duke dev
user@host|myprojectname:~/.../trunk/my-project-name$:

Once the development environment is activated, the shell prompt should be prefixed with the project’s name to indicate
that you are working within a sandboxed environment.

The distinction is important because the development environment extends your shell with new commands and does
some magic to make sure you are working within the sandbox.

For example, if you type the command python in dev mode, the Python interpreter executed isn’t the system wide
python interpreter (usually /usr/bin/python). Instead it will call the python interpreter sandboxed in my-project-
name/.duke/bin/python.

The environment also provide shortcuts and commands to ease the development process.

15

django-duke-client Documentation, Release dev

Commands & shortcuts

Command Description
buildout Run buildout to build or rebuild your environment
dbshell Run the database shell (alias for django runserver)
dev Run the duke development environement
python Run the python environement
runserver Run the dev server (alias for django runserver)
shell Run a python shell* (alias for django shell)
syncdb Synchronize database (alias for django syncdb)
init Create the duke environement (run buildout after using init)
startproject Create a new django project
customize Copy the config of duke to ~/.duke (see Customisation)
help Print all the commandes

* if ipython is install, ipython will be ruen instead of python

16 Chapter 5. Development mode

CHAPTER 6

Project configuration

Contents

• Project configuration

– Introduction

* buildout.cfg

* dev.cfg

– Configurations

* [duke]

* [buildout]

* [python]

* [django]

* [sources]

* [versions]

– Working with sources

Introduction

Project configuration is made with the buildout configuration files. By default there is only two cfg files; buildout.cfg
and dev.cfg.

It is possible to create stage specific configuration by adding cfg files named after the stage name which extends
buildout.cfg.

17

django-duke-client Documentation, Release dev

For example, if I have a stage named prod on which I want to configure cron jobs, I simply have to create a prod.cfg
file in which I put the required configuration.

At deploy time, duke will use prod.cfg instead of buildout.cfg.

buildout.cfg

The main configuration is buildout.cfg, it should be complete and functional stand alone as this is the configuration
used in production.

dev.cfg

This configuration file is used only for development, it extends buildout.cfg.

You can extend individual configurations keys like so:

[buildout]
extends = buildout.cfg

extend
eggs +=
ipython

If you wish to overwrite it instead, simply remove the + sign.

Configurations

[duke]

Directive Default Description
django ${buildout:directory}/.duke/bin/django Shortcut to django executable
cron ${buildout:directory}/cron/ Path where cron jobs script are stored

18 Chapter 6. Project configuration

django-duke-client Documentation, Release dev

[buildout]

Directive Default Description
allowed-eggs-
from-site-
packages

PIL,
MySQL-
python,
...

Use this directive to tell buildout which system wide package it can use*

auto-checkout djangoduk-
erecipe

List of modules sources to auto checkout

develop . List of editable modules to install with develop
eggs none List of eggs to install (project requirements)
exec-
sitecustomize

false Normally the Python’s real sitecustomize module is not processed

extensions mr.developer Buildout extensions to load
include-site-
packages

true We allow site packages unless allowed-eggs-from-site-packages is specified

index http://pypi.
python.org

HTTP URL of pypi (default) or a pypi mirror

newest false Check for new packages versions
parts python,

django,
scripts

Buildout parts to run (ex: python, djangodev)

unzip true Zipped eggs make debugging more difficult and often import more slowly
versions versions Freeze eggs or sources to specific versions
sources sources This specifies the name of a section which lists the repositories
sources-dir src This specifies the directory where your package sources will be placed
auto-checkout src This specifies the names of packages which should be checked out during

buildout. Packages already checked out are skipped. You can use * as a wildcard
for all packages in sources

always-
checkout

false This defaults to false. If it’s true, then all packages specified by auto-checkout
and currently in develop mode are updated during each buildout run. If set to
force, then packages are updated even when they are dirty instead of asking
interactively.

always-accept-
server-
certificate

false If it’s true, invalid server certificates are accepted without asking (for subversion
repositories)

• If allowed-eggs-from-site-packages is an empty list, then no eggs from site-packages are chosen, but site-
packages will still be included at the end of path lists.

[python]

inter-
preter

Name of the Python interpreter (default python)

extra-
paths

List of paths to add to the PYTHONPATH. Note that you must add paths of modules installed from
sources here. The path should look like this: ${buildout:directory}/src/mptt

6.2. Configurations 19

http://pypi.python.org
http://pypi.python.org

django-duke-client Documentation, Release dev

[django]

Directive Default Description
extra-paths ${python:extra-paths}
settings settings Name of the django settings module
wsgi false
project false The project name

[sources]

Example:

[sources]
django = git git://github.com/django/django.git
django-mptt = git git://github.com/django-mptt/django-mptt.git branch=reodering_test
django-fiber = git://github.com/ridethepony/django-fiber.git update=true

Supported source kinds: svn, hg, git, bzr, darcs, cvs, and fs.

When adding new sources, don’t forget to also add them in to the extra-paths of the [python] section and the auto-
checkout in the [buildout] section.

[versions]

Example:

[versions]
django=1.4
PIL=1.7.1

Working with sources

If you work with source packages You need to edit tree configs.

Tell buildout to checkout the package every time:

[buildout]
auto-checkout +=
django

Then specify the source URL:

[sources] # svn, hg or git
django = git git://github.com/django/django.git

Finally, add it to the environment’s PYTHONPATH like this:

[python]
extra-paths +=
${buildout:directory}/src/django

20 Chapter 6. Project configuration

CHAPTER 7

Deploying

Contents

• Deploying

– With fabric

* Project Configurations

* Deployment configurations

* Usage

* Per role configurations

– Development roadmap

With fabric

Caution: This is pretty much alpha stuff, it might change a lot in the future.

Currently the duke client only offer some useful fabric tasks for standard django deployment.

Project Configurations

To use it, simply create a file named fabfile.py in the root directory of your project (where your setup.py file is).

The file content should look like this:

21

http://fabfile.org/

django-duke-client Documentation, Release dev

import os

from dukeclient.fabric.utils import get_role, get_conf, get_project_path
from dukeclient.fabric.tasks import *

LOCAL_PATH = os.path.dirname(os.path.abspath(__file__))

env.roledefs.update({
'demo': ['user@demo.host.com'],
'prod': ['user@production.host.com:5555'],

Not required, but can be useful if you want to invoke commands
on multiple servers at once.
'http_servers': ['user@production.host.com:5555', 'user@demo.host.com'],

})

env.site = {
'domain': 'mysite.com',
'package': 'mysite.com',
'project': 'mysite',
'repos': 'svn://svn.myserver.com/mysite.com/trunk/mysite.com/',

}

env.roleconfs = {

This is an example of how you can deploy on Plesk
'prod': {

'hosts': env.roledefs['prod'],
'user': 'username',
'group': 'usergroup',
'document-root': '/var/www/vhosts/%(domain)s/httpdocs/',
'vhost-conf': '/var/www/vhosts/%(domain)s/conf/vhost.conf',

Most commands uses an event system which will run scripts
at specific times.
'on-code-sync': [],
'on-code-sync-done': [],
'on-apache-reload': [

You can run scripts before and after most of the available
commands. In this case we tell Plesk to reload its vhost
configuration for mysite.com
'/usr/local/psa/admin/sbin/websrvmng --reconfigure-vhost --vhost-name=

→˓%(domain)s',
],
'on-apache-reload-done': [],

If mod_python is installed on your Apache server, you'll need
virtualenv or you will go insane. Really.
'virtualenv': True,

},

This example show a more basic Apache deployment
'demo': {

'hosts': env.roledefs['demo'],
'document-root': '/var/www/vhosts/demo.%(domain)s/',
'media-root': '/var/www/vhosts/demo.%(domain)s/%(domain)s/%(project)s/media/

→˓',
'static-root': '/var/www/vhosts/demo.%(domain)s/%(domain)s/static/',

22 Chapter 7. Deploying

django-duke-client Documentation, Release dev

'vhost-conf': '/etc/apache2/sites-enabled/demo.%(domain)s',
'virtualenv': True,
'user': 'www-data',
'group': 'www-data',
'on-deploy-done': [

'ln -sf /var/www/vhosts/demo.%(domain)s/%(domain)s/%(project)s/media/ /
→˓var/www/vhosts/demo.%(domain)s/media',

],
},

}

Deployment configurations

Deployment configurations must be stored in a directory named deploy/ in the root directory of your project.

Virtualhost

Virtual host files a threated as template, so you don’t have to adjust them every time you change a configuration.

The naming convention is <role>.vhost. So if you have a demo and a prod role, your vhost files should be name
demo.vhost and prod.vhost.

Here’s an example of a standard Apache/WSGI vhost configuration file:

<VirtualHost *:80>
ServerAdmin max@motion-m.ca
DocumentRoot %(document-root)s
ServerName %(project)s.d.motion-m.ca
ErrorLog /var/log/apache2/%(package)s.d.motion-m.ca-error_log
CustomLog %(project)s.d.motion-m.ca common
Options FollowSymLinks
WSGIPassAuthorization On
WSGIScriptAlias / %(document-root)s%(package)s/%(project)s/wsgi.py
WSGIDaemonProcess %(project)s user=www-data group=www-data processes=5 threads=1
WSGIProcessGroup %(project)s
Alias /static/ %(document-root)sstatic/
Alias /media/ %(document-root)smedia/
<Directory %(document-root)smedia/>

Order deny,allow
Allow from all
AllowOverride None

</Directory>
<Directory %(document-root)sstatic/>

Order deny,allow
Allow from all
AllowOverride None

</Directory>
</VirtualHost>

Settings.py

The settings.py files can be automatically overwritten with a settings.py template.

7.1. With fabric 23

django-duke-client Documentation, Release dev

For example, to set your project’s settings on a role named demo you would start by creating a file named de-
ploy/demo_settings.py.

Now every time you deploy your code, the file deploy/demo_settings.py gets copied over myproject/local_settings.py,
overriding any other settings set elsewhere.

Here’s an example which defines the default database backend:

from %(project)s.conf.settings.default import *

DATABASES = {
'default': {

'ENGINE': 'django.db.backends.%%s' %% "mysql", # Read the caution below !
'NAME': '%(project)s_demo',
'USER': '%(project)s',
'PASSWORD': '*********',

}
}

Caution: Make sure to scape all the modulos by duplicating them like this: %%.

Since I use Advanced String Formating to replace the template variables you have to be careful when using a
modulo (%). If you don’t escape it Python will think it has to insert a token there and will most likely throw an
exception at your next buildout.

Usage

Deploying

On demo:

fab -R demo full_deploy

On prod:

fab -R prod full_deploy

On both:

fab -R http_servers full_deploy

Updating

fab -R prod deploy

Caution: The deploy command will not update externals

Other commands

Other commands will eventually be documented properly .. meanwhile you can list them all using the fab -l command.

24 Chapter 7. Deploying

django-duke-client Documentation, Release dev

Per role configurations

Sometimes you want to tweak configurations depending on which role the project is running on.

To accomplish this, simply create a cfg file named after the role and make it extend the buildout.cfg file.

The next time buildout will be run on this role, it will find the file and use it instead of buildout.cfg.

Here’s an example of how one could set a cron job on the production server:

prod.cfg:

[buildout]
extends = buildout.cfg
parts += django-cleanup

[django-cleanup]
recipe = z3c.recipe.usercrontab
times = @monthly
command = ${buildout:directory}/.duke/bin/django cleanup

Development roadmap

In the long term a django duke master will be created. The scope of the functionalities isn’t yet fixed, but it’s main pur-
pose will be to act as a deployment server. It will hold servers and projects configurations and allow easy deployment
using the duke command.

There is several advantages of using centralized deployment instead of a distributed deployment strategy (with fabric).
But the most important advantage for us is to be able to assign deployment rights to developers without giving them
actual access to the production servers.

When centralized deployment will be implemented, we will probably move to other nice to have features like scheduled
deployment and continous integration and maybe even a plugin architecture for things like website monitoring, project
management and such.

7.2. Development roadmap 25

django-duke-client Documentation, Release dev

26 Chapter 7. Deploying

CHAPTER 8

Cheatsheet

Contents

• Cheatsheet

– Duke commands

– Dev commands

Duke commands

Note: An <argument> ending with -r means the command accepts Regular Expressions

duke startproject <project-name> | Create a new project from scratch
duke init <project_name> Initialize a django project*
duke dev Start development environment

* Duke will create the project if it doesn’t exists. It will also start the developent environment when
done.

Dev commands

buildout Build or rebuild development env.

buildout | Build or rebuild development env. |

27

django-duke-client Documentation, Release dev

28 Chapter 8. Cheatsheet

CHAPTER 9

Customization

Intitialisation

You can tweak your development environment quite alot.

To do so, simply type this command:

user@host$ duke customize
Copying setup.py to ~/.duke/templates/
Copying profile to ~/.duke/templates/
Copying bootstrap.py to ~/.duke/templates/
Copying gitignore to ~/.duke/templates/
Copying buildout.cfg to ~/.duke/templates/
Copying project_conf.yml to ~/.duke/templates/
Copying dev to ~/.duke/templates/
Copying env to ~/.duke/templates/
Copying duke_conf.yml to ~/.duke/templates/
Copying base.cfg to ~/.duke/templates/
Copying svnignore to ~/.duke/templates/
Copying dev.cfg to ~/.duke/templates/

Files

In the same shell:

user@host$ cd ~/.duke/templates
user@host$ ls
base.cfg bootstrap.py buildout.cfg dev dev.cfg duke_conf.yml env gitignore
→˓profile project_conf.yml setup.py svnignore

The files profile and env are used to personalize your prompt, or to add commands (alias) .

29

django-duke-client Documentation, Release dev

Customize prompt

If you want to modify your duke prompt, (simply) you have to edit profile.

Here the default profile file:

Typing "--settings=projectname.settingsfile" is annoying.
DJANGO_SETTINGS_MODULE=settings
SEP="|"
ENDCHAR="$ "
DUKE_DIRTRIM=2
DUKE_DJANGO_STR="django:"
DUKE_SVN_STR="svn:"
DUKE_GIT_STR="git:"
DUKE_PS1="${NO_COLOR}\u@\h${SEP}${BOLD_CYAN}\$(__in_project)${CYAN}%(project_name)s$
→˓{NO_COLOR}${SEP}${BOLD_YELLOW}\$(__vcs_status)${YELLOW}\w${NO_COLOR}${ENDCHAR}"

will produce the following prompt:

user@host|projectname|svn:~/.../path/in/project$

You can change de value of the variable to personalize your prompt.

If it’s not enough, you can edit the env file.

Caution: all that you make in profile overwrite env

Here the default env file:

. ~/.bashrc
based on virtualenv's activate
This file must be used with "source bin/activate" *from bash*
you cannot run it directly

Shell colors
BLACK="\[\e[0;30m\]" BOLD_BLACK="\[\e[1;30m\]" UNDER_BLACK="\[\e[4;30m\]"
RED="\[\e[0;31m\]" BOLD_RED="\[\e[1;31m\]" UNDER_RED="\[\e[4;31m\]"
GREEN="\[\e[0;32m\]" BOLD_GREEN="\[\e[1;32m\]" UNDER_GREEN="\[\e[4;32m\]"
YELLOW="\[\e[0;33m\]" BOLD_YELLOW="\[\e[1;33m\]" UNDER_YELLOW="\[\e[4;33m\]"
BLUE="\[\e[0;34m\]" BOLD_BLUE="\[\e[1;34m\]" UNDER_BLUE="\[\e[4;34m\]"
PURPLE="\[\e[0;35m\]" BOLD_PURPLE="\[\e[1;35m\]" UNDER_PURPLE="\[\e[4;35m\]"
CYAN="\[\e[0;36m\]" BOLD_CYAN="\[\e[1;36m\]" UNDER_CYAN="\[\e[4;36m\]"
WHITE="\[\e[0;37m\]" BOLD_WHITE="\[\e[1;37m\]" UNDER_WHITE="\[\e[4;37m\]"
NO_COLOR="\[\e[0m\]"

parse_git_branch () {
git branch --no-color 2> /dev/null | sed -e '/^[^*]/d' -e 's/* \(.*\)/\1/'

}

parse_git_dirty () {
[[$(git status 2> /dev/null | tail -n1) != "nothing to commit (working directory

→˓clean)"]] && echo "*"
}

__vcs_status () {
if [-d "$PWD/.svn"]; then

echo "$DUKE_SVN_STR"

30 Chapter 9. Customization

django-duke-client Documentation, Release dev

elif [-n "$(parse_git_branch)"]; then
echo "$DUKE_GIT_STR"

fi
}

Prefix the command prompt with %(project_name)s
function __in_project {

if ["`pwd | xargs basename`" = "%(project_name)s"] ; then
echo "$DUKE_DJANGO_STR"

else
echo ""

fi
}

Duke client default environment variables

DUKE_ENV="%(base_path)s"
DUKE_DIRTRIM=2
CUSTOM_TEMPLATES="~/.duke/templates"
_DUKE_OLD_PATH="$PATH"

Add bin/ to the executable path to make them available
without having to type their path and make all scripts
in it executables.
PATH="$DUKE_ENV/.duke/bin:$PATH"
export PATH
chmod a+x $DUKE_ENV/.duke/bin/*

unset PYTHONHOME if set
this will fail if PYTHONHOME is set to the empty string (which is bad anyway)
could use `if (set -u; : $PYTHONHOME) ;` in bash
if [-n "$PYTHONHOME"] ; then

_DUKE_OLD_PYTHONHOME="$PYTHONHOME"
unset PYTHONHOME

fi

This should detect bash and zsh, which have a hash command that must
be called to get it to forget past commands. Without forgetting
past commands the $PATH changes we made may not be respected
if [-n "$BASH" -o -n "$ZSH_VERSION"] ; then

hash -r
fi

set a fancy prompt (non-color, unless we know we "want" color)
case "$TERM" in

xterm-color) color_prompt=yes;;
esac

Django commands

function __django {
if [-e "settings.py"] ; then

django $@
else

echo "Error: You must be within a django project to use this command."
fi

}

9.3. Customize prompt 31

django-duke-client Documentation, Release dev

alias syncdb="__django syncdb"
alias runserver="__django runserver"
alias shell="__django shell"
alias dbshell="__django dbshell"
alias loaddata="__django loaddata"
alias dumpdata="__django dumpdata"

Duke commands

function __duke {
if [-e "buildout.cfg"] ; then

$@
else

echo "Error: You must be within a duke project to use this command."
fi

}

FIXME: The -vv flag is only a dirty hack to workaround a suspected
threading issue with python. For some reason, on a fast machine with
multiple cores, buildout hangs randomly. Increasing buildout's output
solves this issue. If you are still experiencing this problem, consider
using -vvv for even more output.
https://github.com/fschulze/mr.developer/pull/76
alias buildout='__duke buildout -c dev.cfg -vv'
alias dev='__duke develop'

Python commands

Make sure that while within the dev environment we only
use the sandboxed python interpreter.
alias python="$DUKE_ENV/.duke/bin/python -S"
alias ipython="$DUKE_ENV/.duke/bin/ipython --autoindent --no-banner --deep-reload"

Prompt

function __duke_prompt {
if [-z "$DUKE_ENV_DISABLE_PROMPT"] ; then

_DUKE_OLD_PS1="$PS1"
_DUKE_OLD_DIRTRIM="$PROMPT_DIRTRIM"
. profile

if ["x" != x] ; then
PS1="$PS1"

elif ["`basename \"$DUKE_ENV\"`" = "__"] ; then
special case for Aspen magic directories
see http://www.zetadev.com/software/aspen/
PS1="(%(project_name)s$(in_project)) $PS1"
PROMPT_DIRTRIM="$PROMPT_DIRTRIM"

else
PROMPT_DIRTRIM="$DUKE_DIRTRIM"
PS1="$DUKE_PS1"

fi
export PS1
export PROMPT_DIRTRIM

fi
}
__duke_prompt

32 Chapter 9. Customization

django-duke-client Documentation, Release dev

In this file you can creat / modify some variable. For exemple if you want toi create a new alias for the django
collectstatic commande, you juste have to add this line:

alias collectstatic="__django collectstatic"

9.3. Customize prompt 33

	Overview
	What is Django Duke client ?

	Screenshots
	duke commands
	Dev. environment commands
	Dev. environment shortcuts

	Installation
	Official releases
	Development version

	Getting started tutorial
	Project layout
	Starting a project from scratch
	Initializing your project
	Building your project
	Start working !
	Customization
	References

	Development mode
	Introduction
	Commands & shortcuts

	Project configuration
	Introduction
	Configurations
	Working with sources

	Deploying
	With fabric
	Development roadmap

	Cheatsheet
	Duke commands
	Dev commands

	Customization
	Intitialisation
	Files
	Customize prompt

